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FOREWORD

The material presented here is in response to reportin'g require-
ments for NASA Grant NsG-354/05-003-016. The project is entitled,
—~—

"Advanced Theoretical and Experimental Studies in Automatic Control
and Information Systems.DThe principal investigators are Professors
C. A. Desoer, E. Polak, D. Sakrison, and L. Zadeh.

This material will appear in the first consolidated semiannual
progress report of the Electronics Research Laboratory, University
of California, Berkeley, which is for the period of 16 November 1964

through 30 June 1965. The next ERL semiannual report will be for the

period ending 31 December 1965.




ESTIMATIONS AND CONTROL OF NONLINEAR
PHYSICAL SYSTEM

NASA Grant NSG-354 (Supplement 2)
T.C. Gaw (Prof. M. Aoki)

The problem under investigation is a class of adaptive control
systems. It is assumed that the system dynamics is governed by

dx
- = f ’: 1) ]
=r: {x,u,t)
where x = state variables, and
u = control.

The output or observation y = h(x) + noise is assumed to be contam-
inated with noise of unknown probability distribution and the control u
satisfies the equation

d
a—? = g(uwt,y).

The purpose of this project is to find the best estimate of the
state variables x(t) under the circumstances given above. Using the
criterion »

‘ t
2
Flu(t), %(t), t] =/ dt {[ K, R(t) + kzuz(t)] + 2[ y(t) - hX(t)] } ,
0

and invoking the invariant imbedding technique, the following results
are obtained
€2 . gl2f + fipc : ]
dt s kls-)\ (y-h{s)dh/ds
2
d "h(s) d h(s)
_az[kl-zx[y(t)-h(s)]__z._+x—-—--] , | (1)
ds ds
ds _ dh
E-f-a[kls—k(y-h(s))a‘g]» (2)
where X = s (present estimate) ,
! = ¢,
g o= X
s os
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To test the applicability of the above technique, a few computer
runs will be made. The solution of Eq. 2 will be compared with the
solution of the state variables obtained from known noise character-

istics.
GAIN FPUNCTION CHARACTERIZATION OF SYSTEMS

L t NSG-354 (Supplement 2)
D. Chazan (Proi. C.A. Desocr)

In the study of control systems it is almost universally assumed
that the behavior of a (continuous time) control system is described by
a aifferential equation partial or otherwise. In this work a different and
more gencral description of control problems has been investigated which
does not involve any differential euqations and attempts to reduce the
problem to essentials. An inquiry was made into the possibility of
translating some of the results of control theory into this setting. The
answer obtained was in the positive at least in the special case that
was studied.

At the base of this approach lies the concept of a gain function
which assigns to every pair of states in the state-fine space the gain
incurred in going from one state to the other. Such gain functions sat-

isfy the following semi group condition:

C,p (uy)=sup[C . (xz)+ C , (2] (1)
12 13 32

whenever t, < tg < t, (see quarterly report No. 14), and may be used

1
to define a generalized system which is not necessarily describable by
a differential equation. Thus a valid and mathematically interesting
problem is the characterization of functions satisfying Eq. 1. A com-
nlete solution to this problem would certainly produce a generalized

-
O

Theorem: Let X be a locally convex linear topological space. Let
Tt be a one parameter time group of continuous linear transformation
on X which is continuous in t is some well defined sense. If
C, . {x,y) is a gain junction (i.e. it satisfies Eq. 1), C (%, y) =
t. & t.t
i72 172
C {0, y-T x), C, {(0,x%) is upper semi continuous in x and
O, t _t t -tl O)t .
2 1 2
whenever t —e 0 CO’t (0x J—e -00 unless x— 0 then the function
n n tn e

C. (-, ) is convex. Furthermore itis possible to obtain a complete

characterization of CO t(O, - ) which in the special case when X is a

Banach space and T is continuous in t uniformly on X reduces to:
L

(rt )
C, (0, x) = sup [ cfult)dt: x = Ax+ u,x(0) =0x(t) = cj
PRY LJO
for some convex function ¢ /- ) on X and a continuous linear operator A.




NASA Grant NSCG-354 (Supplement 2 )
C.T. Lee (Prof. C.A. Desocer)
We consicer the system S shown in Fig. 1
. s Y e T Ui
M WL T :
S I AN

Fig. 1. The system S

12 is a single-inputl single-output feedback system. The system is

e
characterized by following operator equations.

e = u-y ,
@ = Fe , (1)
y = Ka »

where I and X are operators.

(1) may be written as
(I+KFje=u (2)
y = KZe. {(3)
We shall introduce some notations before proceeding to the

problems

1. H : a2 real Hilbert space, <., - > will denote the scalar
product in H, and .

2. .t x be a real valued function defined on [ 0, ). Let us call
-, the projection operator such that
(PTX)(t) = x(t) for 0 <t <T
=0 elsewhere .
3. He: an extension of H such that
a) the elcments of I—Ie are functions defined on | 0, w)
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1. PWM Linear Sampled Data System

It is assumed that the plant is described by a set of linear
differential equations of the form

X = éic_-i-_b_u

)\l 0
Az(o "xn> Mo S Rpap S S <0
b = col (bl,. ’bn)
x = col (xl, ,Xn)
u = scalar

The state of the system is assumed to be sampled once every second
(on a normalized time scale), and the control function u(t) is given by

sgn u n-1<t<n-1+»[uli
n —
u(t) =
0 n-1+fuy] < t<n
where the uy n=1,2,... are constants satisfying l [i l for all n .

The optimal control problem is stated in the following form:
Given that the system is in an initial state Xy at t = 0, find

a control sequence Ups Uoy wees Uy which brings the system to the

origin in a number of sampling periods, N, which is less than or
equal to the nunber of sampling periods required with any other control

sequence.
The following definitions are used in the discussion of the

algorithm:

wiwp ¢ e U NAe2 Ly
£ 2 wme AR )b
dx) 2 X if{xlil
Sal{x =
sgnx if| x| >1
: N
R & {xy/x5 = -Y wi(w)sgnuy, [u] <=l ..., N}

i=1
the set of states from which the origin is reachable
in N samplings periods or less.

i



2. Optimal Control Algorithm

The algorithm is bxsed on the following conjectured theorem.

Theorem: Under the conditions of the problem stated above,
the sets CN CETY, N=n, n+l,... definzd by

Cy= { c/the set of indices { i/i <N,[<r,¢c > <1} has cardinality >n}

have the properties that
(a) C,, is homeomorphis to RN for every N > n with the

N
homeomorphism f{: CN—“RN given by
N
f(c) = -.Z w. (sat <mn, c>) sgn<gr, c>
i=1
(b) for any X € RN there exists a control sequence
Upy Uys ey Uy which brings thie system from the
initial state Xy to the origin in N sampling periods,
which is given by u. = sat < r,, g'l(io) > i=1,...,N

(c¢) £ and £ ! are piecewise differentiable. Some remaining
details of the proof of this theorem are being worked out
and it is expected that the material will be submitted for
publication in the near future. :

Given the initial state, x, , of the system, the basic procedure
used in this algorithm is to examine successively Rn’ Rn+ e to

determine whether x, belongs to these sets, stopping at the first N for
which x, € RN' This N represents the minimum number of sampling
vperiods_(%o bring the system to the origin. To determine whether Xy is

in RN for a fixed N, the algorithm seeks a solution of the equation

fle) = x4

with ¢ eCN. This is accomplished using standard techniques for the

solution of a set of nonlinear equations. If a solution is not found, N
is increased by one and the procedure is repeated. If a solution,

So€ CN’ is found, then an optimal control is given by

u.£sat<r.,c > i=1,...,N.
i =i’ =0

The procedure described here has not been tested in practice.
However, an equivalent procedure involving a more complicated function
f was examined using a second-order system with initial states less

than or equal to 20 sampling periods from the origin. Typical com-
putation times for initial states picked at random were of the order of

-9-



4 to 5 seconds or less on an IBM 7094 computer. The authors expect
to obtain considerable computational experience with this algorithm
during the next few months. The relative simplicity of the present
procedure, as compared with the one for which computation times were
quoted, would lead one to suspect that these times could be reduced by
a factor of two or more. The actual times obtained will be reported in
the next progress report.

REAL-TIME IDENTIFICATION OF TRANSFER

NASA Grant NsG-354 (Supplement 2)
K.Y. Wong (Prof. E. Polak)

A new method of real-time identification of a transfer function
under normal operation with noise disturbance is discussed. The problem
is stated and a summary is given of the writer's previous result in using
testing function to convert the problem of estimating the coefficients of
a differential equation into one of estimating the coefficients of an alge-
braic equation. An outline is also given of the use of instrumental
variables to obtain a consistent estimate of the desired parameters. It
is shown that the solution can be re-written into a recursive form, en-
abling the estimates of the parameters to be up-dated. The optimal
shape of the testing function with respect to a suitable criterion is also
discussed.

1. Problem Statement

Assume that the input u(t) and the output V(t) of time invariant
system obey the differential equation:

2
a.?_-d——%-/+ald—V +aﬁV=b‘9—‘i + u. : (1)
dt dt Y o dt

However, V{t) cannot be obéerved, but v(t) can be measured, where
vit) = V(t) + e(t),

e(t) is a stationary noise process with zero mean (not necessary white
noise). We assume that the variables v(t) and u(t) have been observed
over some interval of time which we then divided into subintervals of
length T. The problem is to estimate the coefficients a5, 384, b1 .

A second-order system is chosen for convenience of illustration; the
theory that follows can be trivially extended to higher order systems.
Let g(t) be a continuous function such that

¥
g0 = g0y = g%0y = g = gMhey = 9Ty = 0. (2)

The function g{t) will be called a testing function. Multiplying both

o
sides of Eq. 1 by g(t) and integrating from zero to T, we get,

8 g(J)(t) denotes the jth derivative of g(t).

-10-~




T AT T
(2) ey
azf g(t) V'(e) at+ alj g(t) dat + g(t) V(t) dt

0 0 0

. T T
= bljf g(t)u“”(t) dt+-J[ g(t)yu(t) dt . (3)
0] 0

Equation 3, after integration by parts, gives

T T T T
2 1) 1)(
32/[ é )(t)v(t) dt +a1f -g( (t) dt + aof g(t)v(t) dt +blf g( t)a(t) dt
0 0 0 0

=f

2 T
g u(t)dt+ 9. (-1) ajf ey e(t) at.
0 j=0 0

Note that the integrals
T

f g(j)(t) v(t) dt, j=0,1,2,
0 ,

and

T .
(- g“)(ﬂ u(t) dt, j=0,1,
JO

can easily be computed and that

2 . T .
Z (-1)‘] aj f g(J)(t) e(t) dt
j=0 0

is the disturbance quantity. The process of multiplying by a testing
function and integrating from 0 to T can now be repeated on the
observed data v(t), u(t), for t in the time intervals [T,2T],[2T, 3T]
......... and so on. These will be referred to as the first, 2nd, etc.
intervals of integration. Let us define -

T

X, 4 (-1)j[ oy vty ¢ j=o0,1,2 (4a)
=
T |
x, i—i\j < ue) at (4b)
0

-11-




Vi 9] g(t) u(t) at
0
2 T
o 2 Lewa Poema
§=0 0
A
a3 = B

(4c)

The index k in Eq. 4 refers to the interval of the integration,.

The following set of algebraic equations is then obtained.

%10 11 %12 %13 0 bl
%20 %21 %22 k) 21 Y2
= +
1 1 1 H az 1]
t I 1 1 _a3~ 1
H t l. H H
XNO XNl XNz *N3| N

In symbolic matrix notation, Egq. 5 can be written as

XNE:XNJF-E-N'

Define

X0

Xkl

K
X2

X3

- -

Note that E{x; e)# 0 k=12... N;j=0,L 2™

The problem of estimating the coefficients of the differential Eq. 1 is
transformed into finding a statistical estimate of a in Eq. 5.

"E'" denotes expectation,

-12-




2. TU. of Instrumental Variables to Obtain
Cousistent Estimates

Suppose we generate a vector instrumental stationary stochastic

“k0
z
kl
2y £ i (7)
k2
| %x3
and k is the timing index, such that
. /. T\ _ .
(1) EngN)—Q i=0,1,23,
I . . . T .
where §Nj is a vector with elements (zlj’ ZZj’ .o ZNj)’ and ¢ N 1S the
transpose of ¢ N’
and (ii) E(ENJ. —’Enj) #* 0, j=0,1,2,3, (8)
where E{-Nj is the jth column vector defined by the matrix XN in Eq. 5.
: . ~ T -1, T
Now use the estimator an = <ZN XN) ZN YN {(9)
where
10 n %12 “13
Z20 21 222 Z23
ZN = 1 t 1 t
t 1 1 ]
| #No N1 “N2 N3
. ‘ ~ ! T -1 1 T
Therefore agy = aft ( N ZN XN) (N ZN €N ).

By Slutsky's Theorem [1]

o~ , . 1 T
1;311m ay = &t [ plim( N ZN XN]
Ne—emco

T
N

€

[plim(5 27 ¢ )]

[ 1] s. Wilks, Mathematical Statistics , John Wiley and Sons, Inc. New
York, (1662), p. 102.
¥ "»lim' denotes a limit in probability.

-13-



R el . . 1 T T
It can be shown that (a) plim N ZN X = E Z Xy (10)

where x, was defined in Zg. 6, and it is assumed that the 4 x 4 square
-

ma:rix has finite components; and

(b) plim{ ) = 03

3
,-
4

°N
If the noise process e(t) is white, the asymp-
2
-1

o -1
has been proved to be & X =z = (11)
N zx ~zz T Xz

- f

<1 £ ; e —
therefore plim N

totic variance of a\,

x 4 square matrices defined similarly as

pa re 4

where £, Z_, Z a
ZZ X XZ >
in Eq. 10 and o2 = Ee, .
If e(t) is not white, an asymptotic expression for the variance

of ay; can still be obtained but it is more complicated thar Eq. 11. The

measurable output v(t) of Eq. 1 is correlated with u{t), but u(t) is
independent of e(t); hence an obvious way to generate the instrumental
variable process is to derive it from u(t).

3. Recursive Estimate

Let XN+ r ZN+ r YN~.’-1 be partitioned as follows:

X0 X X2 X3 XN
%20 ! %22 X33

XNt1 T -
oo Fxer | x| Bws .
Xnel 0 Bprn 1 Xnen 2 BN+l 3 41
ZN In

CNTS Il ’ AN B

. Vs

RN YN+




It has bccn chown that the estimator a.. in Zg. 9 obeys the following

N

r T T -1} [ ]
2= A - | By Quey g (147 I AN
Ne1 T AN B e T Pt RSN YNs (12
and
-1
; =2 -P.a. T(l4m,. . P a.. Xy m. ., P
N+l D AN TN AN+ N+l N 2N+ N+l °N

. -1
with PN (ZN }&T) . Note that (1 + My, IPN qN+lT) is a scalar,

4, Optimal Shape of the Testing Function

For a functional of optimality of the testing functions, with T
given, we chose

T
f j R, (s-t) g(t) g(s) ¢t cs
(13)
f f (s-t) g{t) g{s) dt ds

autocorrelation function of V(t), and

ol
i

\
/

where Rs(t)

autocorrelation function of e(t).

R (t)

Both Rs(t) and R (t) are assumed to be known. We shall now show how

to choose a continuous function g(t) that maximizes p{T) subjecct to t

boundary conditions of Eq. 2.

Case A: Rn(t) = &(t), i.e., e(t) is a2 white-noise process.

It is well known that g(t) maximizes the ratio (without boundary con-

ditions)
T ~T
I f Rs (s-t) g(t) g(s) dtds
0 0 (14‘)
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if and only if it satisfies the following integral equation:

max

T
f R (s-t) g(s) ds = A g(t), (15)
0

where A\ ax is the maximum eigenvalue of Eq. 15. If the maximization

i

of the ratio in Eq. 14 is subject to h boundary conditions, then the max-
imum of the ratio in Eq. 14 p(T), by the Courant mini-max lemma|[2],
satisfies the relation

A < <
hel = NT) < max,

where )\h*l is the (h+l)st largest eigenvalue of Eq. 15.
Solution of the integral equation (Eq. 15) by analytical methods
is difficult in practice; hence, approximations in L%O T] are used. Let

M M
Ry (s-t) = L vy b0 wils) (16)
=1 j=1
where
s (T rT ,
Yij _fo j; R_(s-t) (1) qu(s) dt ds , (17)

where {lbi(t) } is a complete orthonormal basis for LZ[ With

. 0,T]"
this series expansion of RS (s-t), the finding of an approximation

solution of Eq. 15 with or without constraints of Eq. 2 on g(t), leads to
a matrix eigenvalue problem. If the Fourier transform of Rs(t) is a

ratio of polynomials in ooz, and if {Ll)i(t)} are chosen to be sine and
cosine functions, then Yij can be computed readily by the residue

method of complex variable theory.

It would be desirable to know p(T) explicitly as a function of
T, since then it would be possible to make a better choice of T; un-
fortunately p(T) can only be computed for a range of T by repeatedly
solving Eq. 15. On the other hand, upper and lower bounds for Kma)é T)

can be easily obtained as functions of T without solving the integral
equation. It has been proved by Bellman and Letter [ 3] that

[ 2] R. Courant and D. Hilbert, Methods of Mathematical Physics,
Interscience (1953), p. 3l.

[ 3] R. Bellman and R. Latter, '""On the integral equation

M £ (x) =I K(x-y) dy, " Proc. Amer. Math. Soc., 3, pp. 884-891 (1952).
0 .
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T T

2

T ] (T-t) Rs(t) dt < )‘max (T) Max f Rs(x-y) dt, (18)
0 0<x<T. 0

In particularly, if Rs(t) is a function which decreases monotonically for

I tl f ¢ the right hand side of the inequality (Eq. 18) reduces to
T

z[z R (t) dt .

0

When the Fourier transform of Rs(t) is a rational polynomial in wz,

certain necessary conditions, as well as some sufficient conditions for
the location of the zeros and poles of the Fourier transform of Rs(t),

have been developed to ensure the monotonicity of Rs(t).

Case B: When RN(t) # 6(t), the optimization problem in Eq. 13
can be solved by expanding Rs(s-t) and RN(s-t) into series of sine and

cosine terms, and the problem again reduces to a matrix eigenvalue
problem.

5. Conclusions

The method of identification outlined in this report can be used
in systems under normal operation condition and it can update the esti-
mate easily when new data are received. Further work will be carried
out choosing an optimal interval of integration and an optimal set of
instrumental variables.

DECOMPOSITION OF LARGE SYSTEMS

NASA Grant NsG-354 (Supplement 2)
P. Varaiya (Prof. L.A. Zadeh)

A basic pr'oblem"m nonlinear programming is the following:
Maximize {f(x)| g(x)> 0, x > 0} NP

where x ¢ E', g: E?P —= E™js a differentiable mapping, and f is a
real-valued, differentiable function. Necessary conditions for the solu-
tion of the NP problem were first formulated by Kuhn and Tucker [1].
Their result essentially consists of a non-trivial extension of the
classical theory of Lagrange multipliers.

(1] HW. Kuhn and A.W. Tucker, "Nonlinear Programming, ' Pro-
ceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, Berkeley and Los Angeles, University of California
Press,(1951), pp. 481-492 . '
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Some effort{ 2] has sirce been devoted to extend the K.T
results to problems where the variables range over more general
spaces or are subject to more general constraints. We have consid-
ered the following problem:

Maximize {f(x)]| g(x) €Qy, xeQ} P

where X and Y are real Banach spaces, x ¢ X, QC Y is an arbitrary
set and Qv C Y is a closed convex set. g: X—Y and f: Y-»=Reals are
arbitrary Frechet-differentiable functions. The necessary conditions
which we obtain are very analogous 0 those of Kuhn and Tucker and are
based on the well known geometric fact that two disjoint closed convex
sets one of which is compact, can be strictly separated by a closed
hyperplane. Such a general viewpoint also lends insight into some
theoretical aspects of optimal control and shows the essential similarilty
between the structure of problern P and those of optimal control. Thus
the necessary conditions for the solution of problem P then gives us
(local) maximum principles for both discrete -- and continuous -~ time
optimal control problem., Moreover, in the case of discrete time
problems, we can assume that the state vector and the control belong
to any real B-spaces. This allows us to obtain necessary conditions
for the solution of stochastic discrete time optimal control problems.

Finally we show that the problem P is related to a saddle-
value or game-theoretic problem. This viewpoint helps us to develop
techniques for the solution by decomposition of some large nonlinear
programming problems. Some of these decomposition results will
appear in the Fall issue of the Control Section of SIAM Journal. Most
of these results will be published soon as an ERL Report. In the near
future we hope to obtain more algorithms for the practical solution of
these problems and extend the theory to cases where we have a vector-
valued or "minimax'' type cost function.

A NEW ALGORITHM FOR A CLASS OF QUADRATIC PROGRAMMING
PROBLEMS WITH APPLICATION TO CONTROL *

NASA Grant NsG-354 (Supplement 2)
M. Canon (Prof. E. Polak)

An algorithm is given which can be used to solve the following
optimal control problems for linear discrete time systems: minimum
energy, minimum time, and minimum energy plus time. Each of the
optimal control problems is reduced to solving a simple quadratic
programming problem (QPP) or a finite sequence of such problems. A
new algorithm is given for solving the QPP, and computational results
are included.

[2] K.J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and
Nonlinear Programming, Stanford University Press, Stanford, Cal-
ifornia, (1958). :

* This paper will appear in the SIAM Journal on Control, Sept. 1965.
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Many algorithms are available in the literature for solving the
minimum time problem [1-3] as well as quadratic programming
problems [ 4,5 ], but in most cases these algorithms cannot be used for
computing optimal controls in a feedback mode because of the large
computation times involved. The primary justification for further con-
sideration of these problems is in decreasing the computation time.

PAM sample data system

Let X be a discrete, time invariant system described by the
linear vector-difference equation

el T A X Ry K20 L )

K € E™ is the state of X at time k, A is an nxn constant

nonsingular matrix, b ¢ EP is a constant vector, and the scalar input

is constrained in magnitude by -1 < u, < 1. Note that no difficulties
qk g y = Y 2

are encountered for the multiple input case, i.e., w~here u € E', r < n.

where x

We assume a single input in order to symplify notation. For a given
input sequence U Uy, sy S U, it is assumed that the energy supplied

to the system X is given by
k
2
J(u, ) = Z u;
i=1

Given x,, the initial state of X, we can iterate Eq. 1 and
express X, and tge control sequence {uj:j=1, 2,...,k}:

Ko |
u ) = Ak(,_¢0+z A'bu). (2)

i=1

¥k (’.‘o’

[1] Wing, J. and Desoer, C.A., ""The Multiple Input Minimal Time
Regulator Problem', IEEE Trans. on Automatic Control, Vol. AC-8,
No. 2, pp. 125-136, 1963.

[ 2] Whalen, B.H., "On Optimal Control and Linear Programming, "
IRE Trans. on Automatic Control (Correspondence), Vol. AC-7,
pp. 45-46, 1962.

[3] Tou, J.T., "Optimum Control of Discrete Systems Subject to Sat-
uration, "JEEETrans. on Automatic Control, pp. 88-89, Jan. 1964.

[ 4] Beale, E.M.L.," On Quadratic Programming', Naval Res. Log.
Quart., 6, pp. 227-244, Sept. 1959.

[5] Wolfe, P., '""The Simplex Method for Quadratic Programming, "
Econometrica, 27, pp. 382-398, 1959.
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Definition: A control sequence U of length k, is said to

belong to the constraint set Q if [ui [ <1 i=12,...,k

Problem I. Minimum Energy Problem

Given the initial state X of X, an integer Ne {1,2,...}, and

a desired terminal state ZN € ED, find a control sequence 9?\1 which

minimizes
i\ 2
Juy = Ly (3)
i=1
subject to the n + N constraints
xN{Xgr Un) = 2y (4)
Q. (5)

un €

Let r, = Al b»i=l, 2, ..., N, then Eq. 4 can be written as

ud

2 N
Lomu s (A xy - xg) S vy
i=1

Since Xg N, and zy are given, VN is known and hence the minimum

energy problém can be restated in the following equivalent form :

minimize J(‘.?N) (6)
N

subject to Loriu = vy (7)
i=1

upy ¢ Q. . (8)

It is easily shown that if the constraints, Eqs. 7 and 8 admit at least
one solution, then the minimum energy problem has a solution, More
' N

precisely, if we let RN = { L T, U iUy € Q2 }, then a solution to

Problem I exists iff YN € RN'_
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Problem II. Intercepting a Moving Target in Minimum Time

Let z
Given the initial state x, of X, and the target {gN: N=1,2,...}, find

n
N € E", N=1,2,..., represent a moving target at time N,

a control sequence uy € Q, of minimum length N, such that
= ; : = A.-i
;_cN(J_co, E'N) =z As in Problem I, define r. = A-'b and
= (A“:_ci - :_co), i=l,2,.... An equivalent formulation is: find the

smallest integer N such that

u,, € Q.

Note that a solution to this problem exists iff VN € RN for some finite

integer N. Clearly, a solution to Problem II can be obtained by finding -
the smallest N for which Problem I has a solution.

Problem III. Minimum Energy Plus Time

Given X0 and the target state zy € E™ at time N, n=12,...,

find a control sequence ‘-1?\1 which minimizes

N
Q(\_:N. N) = aN + Z uiz, a>0
i=1

subject to the constraints XN (3_:0,1_1N) = 2Zy and Uy € 2. As before, this
~ problem is reducible to the following: find a clc\)lntrol 913 which minimizes

Q(EN’ N), subject to the constraints YN T Zl I, Uy Q. Itis easily
1=
shown that this problem has a solution iff YN € RN for some N, and,

furthermore, that a solution can be obtained by solving, sequentially,
Problem I starting with N=1, N=2, etc. :

Problem IV, Intercepting a Moving Target on a Subspace

In some cases it is not required that the system state agree
W1th the target state in all coordinates; e.g., it may be required that
the system state and the target agree in position and velocity. In gen-
eral it may be required that a linear function of the system state agree
with a linear function of the target state. We can formulate this problem
as follows. Let H be an 8 x n matrix and let {z :N=1,2,...} be the
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target. The problem is to find a control sequence u

uy € 2, of minimum
length N, such that

N
- N N-i -
H)_cN(g_co.gN)-HA )_co-!-ZHA bu = Hzg.
i=1
Defining,
r, = H Al-l'.’
i=l,2,...
~ _ _pl
Vi = H(g.i A:_:O).
An equivalent formulation is to find the smallest integer N for which
N
L F U T O
i=1
|uN+1_i| <1l i=L,2,...,N.

It is clear that Problem IV is of the same form as Problem II, and,
therefore, a solution can be obtained as described in Problem II. Note,
however, that if the target state and the system state need only agree
in position, then the problem reduces to the time optimal control of a
first order system.

Analysis We have shown that solutions to the four problems
stated above can be obtained by solving sequentially Problem I. There-
fore, we shall limit our discussion to this problem, and state briefly
how a solution is obtained. For a proof of the theorems and lemmas
which follow, the readeris referred to reference [6].

Lemma 1: If 1_1N is the solution to the minimum energy problem
(Problem I), then there exists a constant vector c ¢ E” such that
u? = sat <§i,<_: >, i=}, 2,...,N.*

We have previously remarked that a solution to the minimum
energy problem exists iff N € RN, consequently, using Lemma 1 we

have:

[6] Canon, M.D. and Eaton, J.H., "A New Algorithm for a Class of
Quadratic Programming Problems with Application to Control, " pre-
sented at First International Conference on Programming and Control
to appear SIAM Journal on ‘Control, Sept. 1965.

*saty 2 y if |y <1, =y/|y| if Iyl >1
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Theorem 1: Each point VN € RN can be represented in the form
N .

YN T LIjsat<r,c>
i=1

&

for some vector c e E".
The minimum energy problem has been reduced to finding a
vector ¢ ¢ E” such that YN i_'N(g). i.e., inverting EN' Note that

{N maps E" onto RN » however, the mapping is not one to one, We
next show that it is possible to restrict the domain of t_'N,' to a subset

of EP, in such a manner as to make t_'N a bijective bicontinuous function,
Since we wish to find an algorithm for determining c given YN (or
determining if a solution exist‘s, i.e., if VN € RN) the continuity of

f_I.ql is of major importance.

Definition: For each c ¢ E", let Iyie) {1,2,...,N} be an
index set such that if i e IN(E) then | <r.»¢ >|<1; fN(c_: ) denotes the
complement of this set relative to {,2,...,N}. Using this notation

t_‘N(c_:) can be written as

fy() = Z r.sat<r,c >+ Z r.<r,c>
ie In(€) ieIn(€)

Definition: Let CN C E" be the set of all points c ¢ E" for
which the vectors {gi tie fN(g) } span E".

It is now possible to prove:

Theorem 2: The mapping {N: CN—-'RN is a homeomorphism.

Using the continuity of {N ! , a finite step algorithm has been
developed for inverting f-N [6]. If there is no solution to YNE {N(g),

then the algorithm terminates in a finite number of steps. Thus, it can
be determined in a finite number of steps whether YN € RN’ and, as

a result, solutions to Problems II through IV can be obtained in a finite
number of steps.

To test the computational efficiency of this algorithm time
optimal controls of length 20 sampling?eriods or less were computed
for a fourth order system (i.e., T, ¢ E?). Using an IBM 7090 computer
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the maximum computation time was 0.4 seconds. In solving the minimum
time problem for an optimal control of length 20 sampling periods the
minimum energy problem is solved 20 times. Thus for N = 20,
Problem I can be solved in approximately 0.07 seconds,

A NEW APPROACH TO THE SOLUTION OF QUADRATIC
PROGRAMMING PROBLEMS

NASA Grant NsG-354 (Supplement 2)
M. Canon (Prof. E. Polak)

All the algorithms presently available for solving quadratic
programming problems (QPP) share one common feature, viz., at each
step of the algorithm the boundary conditions are satisfied and the value
of the cost function is reduced. In this note we show how the QPP can
be reduced for solving a set of simultaneous nonlinear equations. A
finite-step algorithm has been developed for solving these equations.

The Quadratic Programming Problem

Find n real variables x(l), xg, ey x!? (representihg an n-vector

0 . ci
x )which minimize

Jx) = <x%Qx >+ <xd> Y

subject to the constraints
A x=Db (2)
x,2 0, i=L,2,...,n | (3)

Here Q is a symmetric, positive semi-definite n x n matrix, A is an
m x n matrix of full rank, d ¢ E™ and b ¢ E™ are constant vectors.

Let N(Q) and N(A) denote, respectively, the null space of the operators
Q and A. It is assumed that N(Q)N\N(A) = {0}, the zero vector.

Definition: An n-vector x is said to belong to the constraint

set {1, if x. > 0, i=L, 2,...,n.

Definition: Let @ be the image of the constraint set 2 under
the linear transformation A, i.e., & = {A x:x € }.

In a straightforward manner one can prove the following:

Lemma 1: If P e @ , then the QPP has a solution; further-
more, if N(Q)/AN{A) = {0}, then the solution is unique.

T =-24-




Necessary and Sufficient Conditions for Optimality

Following Kuhn and Tucker [1 ] we introduce a scalar valued
function H(g, x) defined by

H(c,x) = < ¢, Ax > - J(x),
where ¢ ¢ Em, J(x) and A are defined above., Let (H 0) » i=1,2,...,n

denote the 1th component of the partial derivative of H with respect to
% evaluated at x = x0 and ¢ = c0 After a slight modification of the
Kuhn and Tucker theorem [1 ] » it is possible to prove Theorem 1.

Theorem l: A necessary and sufficient condition for :_co to be

a solution of the QPP is the existence of a vector goe E™ such that

(i) If x? = 0, then (Héo)i <0 (4a)

.. 0 _ '

(ii) If X > 0, then (H>_gO)i =0 (4b)
It turns out that Eq. 2 implies H(cO, :_50) = max H(c:_0.>_:).

xeQ

The Vector-Valued Function f

For ease in explanation, let us assume that Q is positive def-
inite, A slight modification of the following argument is necessary under
the more general assumption N(Q)NN(A) = {Of

Let g be the vector functmn mapping EM into §: defined as
follows: to each coe E™, g(c ) is that point in @ which satisfies Eq. 4,i.e.,

H(c_: » glc %) = max H(c?, x). (5)
xe G

It is easily shown that g is a function, i.e., to each coe E™ there is

one, and only one, g_coe @ satisfying Eq. 3. One can now associate to
each ce E" a point a ¢ @ by the composite function A o g = f, where

A is the matrix in Eq. 2. By Lemma ], a solution to the QPP exists
if the linear equality constraint, Eq. ¢, is replaced by A x = a, for
all ae® . Consequently, it follows from Theorem 1, that for every

2 € & there exists a c ¢ E™ such that f(c) = a;clearly, f is continuous,
We have proved Theorem 2. '

[1] H.W. Kuhn and A.W. Tucker, ""Nonlinear Programming, "' Proc
Second Berkeley Symposium on Mathematical Statistics and Probability,
University of California Press, Berkeley, 1951, pp. 481-492,
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Theorem 2: The mapping {: E =R is continuous and onto,
furthermore, if a=f(c)=(A ,g) c, then g(c) is the solution to the
QPP:

minimize ' J(x)
subject to Ax = a
X e,

The QPP has now been reduced to inverting the equation
f(c) = . A finite step algorithm has been developed for performing
this inversion and-a computer program has been written and tested on
several problems. Preliminary computational results are favorable.

Unfortunately, we do not yet have a method for proving that
a given signal configuration is a local minimum rather than a type of
saddle point. A more detailed discussion of these results is expected
to appear in the next issue of '""Notes on System Theory', (to be pub-
lished as an ERL report, Spring 1966).

LOWER BOUNDS ON MEAN-SQUARED ERROR

NASA Grant NSG-354 (Supplement 2)
B. Haskell (Prof. D.J. Sakrison)

> >

A

encoder channel decoder

Consider the single parameter transmission system shown
above, where the channel has capacity C bits/sec. The mutual infor-
mation between the input and output per unit time is less than or equal
to C. We wish to maximize this transmitted information while at the
same time minimizing the mean squared error,

f[ (\- >~) p(x/x) p(A) d\ d\ (1)

()\ /\) is the transition probability density function and p(\) is the
a priori density function.

For a given p(\), define the rate distortion function as the

minimum mutual information possible if the mean-squared error is
less than or equal to D.

R(D) = min ff p(N/A) p(N) 1og2'M) ax dax, 4 (2)
p(W/\) | p(\) '
where p(')\\/)\) is varied over the class defined by
=ffp('>:->,)2 p(A/\) p(A) drdX < D. ()
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If T is the time devoted to the transmission of one parameter, then
R(D) < CT. (4)

An equivalent statement is that if CT = R(D), then 62 > D. (5)
Similarly, if p()\/k) is varied over a subclass of that defined

by inequality (3) and RI(D) is obtained, then when using a system in

this class, CT = RI(D) implies that 6 > D. ’ (6)
Consider the a priori density function
R INES! |
p(\) = (7)
0 elsewhere

Using statement (6) we can show that for a PCM system [1 ]

2 1 -ZC'I’
6~ > 3 2 (8)
and we can find a lower bound on the mean-squared error when using
PAM, PPM, or FSK. By means of a lower bound on R(D), derived by

Shannon, we can also show that for any system [ 2]

62 » 2 7 2CT (9)

me

These are plotted in Fig. 1.

The PCM lower bound and the absolute lower bound have been
derived geometrically for the case of gaussian white noise. It is shown
that the bounds can be generalized. (These results are presented in
detail in the Master's II report by B.G. Haskell, '""Pulse Modulation.")

[1] A similar result is shown by A.J. Viterbi, "Maximum SNR for
Digital Communications)' IEEE Trans. on Communications Systems
Vol. CS-12, No. 1, March, 1964.

[ 2] This result is also derived in Wozencraft and Jacobs, Principles
of Communication Engineering, to be published, John Wiley and Sons, Inc.
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CT (nats/\)

. PAM-PPM-FSK
. lower bound
0.5 1
4 Shannon's
4 lower bound
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0.l 0.2 0.3

Fig. 1. Lower bounds on bz.
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